首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144534篇
  免费   6670篇
  国内免费   3153篇
电工技术   4253篇
技术理论   2篇
综合类   6286篇
化学工业   21447篇
金属工艺   8350篇
机械仪表   6996篇
建筑科学   6749篇
矿业工程   2661篇
能源动力   2765篇
轻工业   7469篇
水利工程   2314篇
石油天然气   4194篇
武器工业   524篇
无线电   16699篇
一般工业技术   23570篇
冶金工业   5537篇
原子能技术   875篇
自动化技术   33666篇
  2024年   141篇
  2023年   1072篇
  2022年   1489篇
  2021年   2439篇
  2020年   1925篇
  2019年   1723篇
  2018年   16026篇
  2017年   15217篇
  2016年   11650篇
  2015年   3035篇
  2014年   3222篇
  2013年   3785篇
  2012年   7141篇
  2011年   13698篇
  2010年   11822篇
  2009年   8969篇
  2008年   10045篇
  2007年   10972篇
  2006年   3764篇
  2005年   4225篇
  2004年   3223篇
  2003年   2940篇
  2002年   2104篇
  2001年   1520篇
  2000年   1704篇
  1999年   1721篇
  1998年   1528篇
  1997年   1275篇
  1996年   1165篇
  1995年   952篇
  1994年   832篇
  1993年   569篇
  1992年   432篇
  1991年   383篇
  1990年   252篇
  1989年   210篇
  1988年   187篇
  1987年   108篇
  1986年   91篇
  1985年   56篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   45篇
  1959年   35篇
  1958年   38篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
12.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
13.
Technical development in electronic devices is frequently stifled by their insufficient capacity and cyclic stability of energy-storage devices. The nano-structured materials have sensational importance for providing novel and optimized combination to overcome exiting boundaries and provide efficient energy storage systems. Metal hydroxide materials with high capacity for pseudo-capacitance properties have grabbed special attention. Lately, the blend of nickel and cobalt hydroxides has been considered as a favorable class of metallic hydroxide materials owing to their comparatively high capacitance and exceptional redox reversibility. The sulfonated carbon nanotube fluid (SCNTF) was prepared by the ion exchange method to be utilized as the exceptional templates due to astonishing specific surface area, ensuring the maximum utilization of the active material. The CoNi-layered double hydroxides (LDHs)/SCNTF core-shell nanocomposite was prepared by the simple solvothermal method. Structural analysis showed that the composite material had the high conductance of carbon materials, the pseudo-capacitance characteristics of metal hydroxides, and porous structure, which facilitates the ion shuttle when the electrolyte reacts with the active material. Electrochemical analysis results showed that CoNi-LDHs/SCNTF had excellent rate performance, reversible charge-discharge properties and cycle stability. It exhibited an extreme specific capacity of 1190.5 F g?1 at a current density of 1 A g?1; whereas specific capacity remained 953.7 F g?1 at the current density was 10 A g?1. In addition, the capacity retention rate after 5000 charge-discharge cycles at a current density of 20 A g?1 was 81.0%. The results indicated that the CoNi-LDHs/SCNTF core-shell nanocomposite material is cost efficient and an effective substitute in energy storage applications.  相似文献   
14.
Titanium and boron are simultaneously introduced into LiNi0.8Co0.1Mn0.1O2 to improve the structural stability and electrochemical performance of the material. X-ray diffraction studies reveal that Ti4+ ion replaces Li+ ion and reduces the cation mixing; B3+ ion enters the tetrahedron of the transition metal layers and enlarges the distance of the [LiO6] layers. The co-doped sample has spherical secondary particles with elongated and enlarged primary particles, in which Ti and B elements distribute uniformly. Electrochemical studies reveal the co-doped sample has improved rate performance (183.1 mAh·g-1 at 1 C and 155.5 mAh·g-1 at 10 C) and cycle stability (capacity retention of 94.7% after 100 cycles at 1 C). EIS and CV disclose that Ti and B co-doping reduces charge transfer impedance and suppresses phase change of LiNi0.8Co0.1Mn0.1O2.  相似文献   
15.
Grain refinement is critical for fabricating high-quality Al-Si casting components in the application of automobile and aerospace industries,while the well-known Si-poisoning effect makes it difficult.Nbbased refiners offer an effective method to refine Al-Si casting alloys,but their anti Si-poisoning capability is far from being understood.In this work,the grain refining mechanism and the anti Si-poisoning effect in the Al-10 Si/Al-5 Nb-B system were systematically investigated by combining transmission electron microscope,first-principles calculations,and thermodynamic calculations.It is revealed that NbB2provides the main nucleation site in the Al-10 Si ingot inoculated by 0.1 wt.%Nb Al-5 Nb-B refiner.The exposed Nb atoms on the(0001)NbB2and(1-100)NbB2surface can be substituted by Al to form(Al,Nb)B2intermedia layers.In addition,a layer of NbAl3-like compound(NbAl3')can cover the surface of NbB2with the orientation relation of(1-100)[11-20]NbB2//(110)[110]NbAl3'.Both of the(Al,Nb)B2and NbAl3'intermedia layers contribute to enhancing the nucleation potency of NbB2particles.These discoveries provide fundamental insight to the grain refining mechanism of the Nb-B based refiners for Al-Si casting alloys and are expected to guide the future development of stronger refiners for Al-Si casting alloys.  相似文献   
16.
In nature, the feathers of the goose Anser cygnoides domesticus stay superhydrophobic over a long term, thought as the main reason for keeping the surface clean. However, contaminants, especially those that are oleophilic or trapped within textures, cannot be removed off the superhydrophobic feathers spontaneously. Here, a different self-cleaning strategy based on superhydrophilic feathers is revealed that is imparted by self-coating of the amphiphilic saliva, which enables removing away low-surface-tension and/or small-size contaminants by forming directional water sheeting depending on their unique anisotropic microstructures. Particularly, the surface superhydrophilicity is switchable to superhydrophobicity upon exposure to air for maintaining a clean surface for a long time, which is further enhanced by coating with self-secreted preening oil. By alternate switching between a transient superhydrophilicity and a long-term stable superhydrophobicity, the goose feathers exhibit an integrated smart self-cleaning strategy, which is also shared by other aquatic birds. An attractive point is the re-entrant structure of the feathers, which facilitates not only liquid spreading on superhydrophilic feathers, but also long-term stability of the cleaned surface by shedding water droplets off the superhydrophobicity feathers. Thus, artificial self-cleaning microtextures are developed. The result renews the common knowledge on the self-cleaning of aquatic bird feathers, offering inspiration for developing bioinspired self-cleaning microtextures and coatings.  相似文献   
17.
As an anticancer drugs, arsenic trioxide (ATO) has been certified to efficiently treat refractory acute promyelocytic leukemia (APL). Unfortunately it suffers from limited therapeutic potency for solid tumors due to its in vivo restricted administration dose and rapid renal clearance. Herein, distinct 2D arsenic-phosphorus (AsP) nanosheets are engineered by adopting an alloy strategy followed by exfoliation, which can confine toxic arsenic into AsP crystals, thus significantly improving the biosafety and biocompatibility of arsenic-based chemotherapeutic drugs. Of particular note, the high light absorption and strong photothermal-conversion efficiency (37.6%) in the second near infrared biowindow (NIR-II) of AsP nanosheets not only endow them with desirable contrast-enhanced photoacoustic imaging properties, but also achieve efficient local tumor hyperthermia, which further synergistically triggers the in-situ transformation from low toxic/nontoxic AsP crystals into highly toxic arsenic species, exerting a strong arsenic-mediated antineoplastic effect. Both in vitro and in vivo data verify the synergy between photonic therapy in NIR-II and enhanced chemotherapy as enabled by AsP nanosheets, paving the way for efficient nanomedicine-enabled arsenic-based chemotherapeutic tumor treatment.  相似文献   
18.
飞行器作为空天装备重要的载体,其表面结构和材料差异造成电势差时,易发生静电放电,严重威胁飞行器的运行安全.文章从飞行器表面静电起电研究动态、飞行器静电起电机理、飞行器静电起电测试方法等方面介绍了该领域国内外的研究动态,以及本团队在静电起电机理以及静电起电测试方法方面研究的主要成果.提出了飞行器摩擦起电和喷流起电的测试方法,获得了飞行器摩擦起电与温度、湿度、摩擦速度以及接触面积之间的关系,通过试验测得了飞行器喷流起电使得飞行器带负电的结论,并分析了当前研究存在的问题和重点研究方向,为飞行器静电防护设计和安全性评估提供参考.  相似文献   
19.
Borazine rings act as a pivotal part in siliconboroncarbonitride ceramics (SiBCN) for high-temperature stability and great resistance to crystallization. A detailed investigation of the ring formation mechanism will guide the design and synthesis of SiBCN to meet application requirements under extreme conditions. Boron trichloride (BCl3) and hexamethyldisilazane (HN(SiMe3)2) are common raw materials for the synthesis of precursors for SiBCN. In this paper, quantum chemical calculation was used to study the cyclization reaction mechanism between BCl3 and HN(SiMe3)2 to form trichloroborazine (TCBZ) at the MP2/6-31G (d,p) level of theory. We discussed the structure properties, reaction pathways, energy barriers, reaction rates, and other aspects in detail. The results show that BCl3 and HN(SiMe3)2 alternately participate in the reaction process, accompanied by the release of trimethylchlorosilane (TMCS), and that the entire reaction shows an absolute advantage in terms of energy. In the Step by step reaction, lower reaction barriers are formed due to the introduction of BCl3 with more heat released compared to that for the introduction of HN(SiMe3)2. The final single-molecule cyclization and TMCS elimination steps are found to be faster compared to all previous bimolecular reactions.  相似文献   
20.
In this paper, the crystal structure, vacancy defect, local electron density and magnetic properties of Gd1-xCaxCrO3 (0 ≤ x ≤ 0.3) polycrystalline samples were investigated systematically. The crystal structural analyses show that all the samples are orthorhombic phase and a structural distortion happens around x = 0.3. Due to the formation of Cr4+ ions, both the lattice constant and the Cr–O bond length decrease. The results of positron annihilation spectrum reveals that the vacancy defect concentration increases and the local electron structure changes with the introduction of Ca2+ ions. The field-cooled (FC) and zero-field cooled (ZFC) curves of Gd1-xCaxCrO3 samples measured under H = 100 Oe exhibits negative magnetization characteristics due to the interaction between Gd3+ and Cr3+ ions, and the magnetism can be affected by the structural distortion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号